Technology Selection for Big Data and Analytical Applications

نویسندگان

  • Denis Lehmann
  • David Fekete
  • Gottfried Vossen
چکیده

The term Big Data has become pervasive in recent years, as smart phones, televisions, washing machines, refrigerators, smart meters, diverse sensors, eyeglasses, and even clothes connect to the Internet. However, their generated data is essentially worthless without appropriate data analytics that utilizes information retrieval, statistics, as well as various other techniques. As Big Data is commonly too big for a single person or institution to investigate, appropriate tools are being used that go way beyond a traditional data warehouse and that have been developed in recent years. Unfortunately, there is no single solution but a large variety of different tools, each of which with distinct functionalities, properties and characteristics. Especially small and medium-sized companies have a hard time to keep track, as this requires time, skills, money, and specific knowledge that, in combination, result in high entrance barriers for Big Data utilization. This paper aims to reduce these barriers by explaining and structuring different classes of technologies and the basic criteria for proper technology selection. It proposes a framework that guides especially small and mid-sized companies through a suitable selection process that can serve as a basis for further advances. TYPE OF PAPER AND

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Big Data Analytics in Power Distribution Network

Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...

متن کامل

A Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection

Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....

متن کامل

Recent analytical applications of magnetic nanoparticles

Analytical chemistry has experienced, as well as other areas of science, a big change due to the needs and opportunities provided by analytical nanoscience and nanotechnology. Now, nanotechnology is increasingly proving to be a powerful ally of analytical chemistry to achieve its objectives, and to simplify analytical processes. Moreover, the information needs arising from the growing nanotechn...

متن کامل

Cloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming

The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...

متن کامل

A Solution to View Management to Build a Data Warehouse

Several techniques exist to select and materialize a proper set of data in a suitable structure that manage the queries submitted to the online analytical processing systems. These techniques are called view management techniques, which consist of three research areas: 1) view selection to materialize, 2) query processing and rewriting using the materialized views, and 3) maintaining materializ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • OJBD

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017